Sasaki, M., Suzuki, A., Drezner, Z., 1999. On the selection of hub airports for an airline hub-and-spoke system. Comput Oper Res 26, 1411–۱۴۲۲٫
Sender, J., Clausen, U., 2013. Heuristics for solving a capacitated multiple allocation hub location problem with application in German wagonload traffic. Electronic Notes in Discrete Mathematics 41, 13–۲۰٫
Shaw, SL., 1993 .Hub structures of major US passenger airline. J Transport Geography 1(1), 47–۵۸٫
Silva, M. R., Cunha, C. B., 2009. New simple and efficient heuristics for the uncapacitated single allocation hub location problem. Computers and Operations Research, 36, 3152–۳۱۶۵
Sim, T., Lowe, T.J., Thomas, B.W., 2009. The stochastic p-hub center problem with service-level constraints. Computers & Operations Research 36 (12), 3166–۳۱۷۷٫
Skorin-Kapov, D., Skorin-Kapov, J., 1994. On tabu search for the location of interacting hub facilities. European Journal of Operational Research 73, 502–۵۰۹٫
Skorin-Kapov, D., Skorin-Kapov, J., O’Kelly, M., 1996. Tight linear programming relaxations of uncapacitated p-hub median problems. European Journal of Operational Research 94, 582–۵۹۳٫
Smith, K., Krishnamoorthy, M., Palaniswami, M., 1996. Neural versus traditional approaches to the location of interacting hub facilities. Location Science 4 (3), 155–۱۷۱٫
Snyder, L., 2006. Facility location under uncertainty: a review. IIE Transactions 38 (7), 537–۵۵۴٫
Sohn, J., Park, S., 1997. A linear program for the two-hub location problem. European Journal of Operational Research 100 (3), 617–۶۲۲٫
Sohn, J., Park, S., 1998. Efficient Solution procedure and reduced size formulations for p-hub location problems. European Journal of Operational Research 108, 118–۱۲۶٫
Sohn, J., Park, S., 2000. The single allocation problem in the interacting three-hub network. Networks 35 (1), 17–۲۵٫
Stanimirovic, Z., 2008. An efficient genetic algorithm for the uncapacitated multiple allocation p-hub median problem. Control & Cybernetics, 3 (24), 669-692.
Stanimirovic, Z., 2010. A Genetic Algorithm Approach for the Capacitated Single Allocation P-Hub Median Problem. Computing and Informatics, 29, 117–۱۳۲٫
Tan, P.Z., Kara, B.Y., 2007. A hub covering model for cargo delivery systems. Networks 49 (1), 28–۳۹٫
Toh, R.S., Higgins, R.C., 1985. The impact of hub and spoke network centralization and route monopoly on domestic airline profitability. Transportation Journal, 24, 16–۲۷٫
Topcuoglu, H., Corut, F., Ermis, M., Yilmaz, G., 2005. Solving the uncapacitated hub location problem using genetic algorithms. Computers & OR 32 (4), 967–۹۸۴٫
Vladimirou, H., Zenios, S.A., 1997. Stochastic linear programs with restricted recourse, Eur. J. Oper. Res. 101(1), 177-192.
Wagner, B., 2004b. Model formulations for hub covering problems. Working paper, Institute of Operations Research, Darmstadt University of Technology, Hochschulstrasse 1, 64289 Darmstadt, Germany.
Yaman, H., Kara, B.Y., Tansel, B.C., 2007. The latest arrival hub location problem for cargo delivery systems with stopovers. Transport Res B 41, 906–۹۱۹٫
Yang, T.H., 2009. Stochastic air freight hub location and flight routes planning. Applied Mathematical Modelling 33 (12), 4424–۴۴۳۰٫
Yin, Y., Madanat, S.M., Lu, X., 2009. Robust improvements schemes for road networks under demand uncertainty, Eur. J. Oper. Res. 198, 470-479.
Yu, C.S., Li., H., 2000. A robust optimization model for stochastic logistic problems, Int. J. Prod. Econ. 64, 385-397.
Zanjirani Farahani, R., Hekmatfar, RM., Boloori Arabani, A., Nikbakhsh, E., 2013. Hub location problems: a review of models, classification, techniques and application. Comput. Ind. Eng. 64 (4), 1096–۱۱۰۹٫
پیوست الف :کد نوشتهشده در نرمافزار GAMS برای حالت قطعی (CSAHLP)
$Title CSAHLP
$onsymxref
$onsymlist
*execseed = gday(jnow)*gminute(jnow)*gsecond(jnow)*gmillisec(jnow);
Sets
n ‘Set of flows and distances between the cities’ /1*37/
;
alias(n,i);
alias(n,k);
alias(n,l);
;
$OnEmpty
Scalars
Chi ‘Collection cost per unit of flow and unit of distance’ /1/
Delta ‘Distribution cost per unit of flow and unit of distance’ /1/
Alpha ‘Transfer cost per unit of flow and per unit of distance between hubs’ /0.4/
;
$include IAD parameters
Parameters
f(k) ‘Fixed set-up cost for installing a hub at node n’
O(i) ‘Total flow originated at node i’
D(i) ‘Total flow destined to node i’
C(k) ‘Capacity of each node’
;
O(i) = sum(k, w(i,k;((
D(i) = sum(k, w(k,i;((
تخصیص ساده و چندگانهی ظرفیت محدود مسئلهی مکانیابی محور مبتنی ...