جهت دستیابی به بهینهترین حالت تشخیص انانتیومرها لازم است که محیط واکنش، مایع یونی یا محیطهای سنتی، با توجه به نوع ماده واکنش دهنده و نوع آنزیم بهینهسازی شود. در واقع نمی توان یک مایع یونی را به عنوان بهترین گزینه برای انجام واکنشهای تفکیک مخلوطهای راسمیک نام برد، همانطور که یک حلال آلی را نمی توان به طور کلی بهترین دانست. با ظهور مایعات یونی، گزینه های حلال انتخابی و بنابراین شانس یافتن محیط مناسب به میزان زیادی افزایش یافته است.
۱-۶- بررسی ساختار پروتئین به روش اسپکتروسکوپی فلورسانس[۴۱]
ملکول پروتئین طی فرآیندهای غیرفعال شدن چند فاز مختلف را طی می کند. این پدیده نشاندهنده یک سری وقایع درون ملکولی در کنفورماسیونهای گذرای پروتئین است (De Diego et al., ۲۰۰۴). از روشهای مختلفی جهت بررسی ساختار پروتئین استفاده می شود که از آن جمله میتوان روشهای [۴۲]DSC ، [۴۳]NMR، CD[44]، FTIR[45]، اسپکتروفتومتری [۴۶]UV، کریستالوگرافی اشعه [۴۷]X و اسپکتروسکوپی فلورسانس را نام برد. فلورسانس یک روش در دسترس است که میتوان از آن جهت بررسی ساختار سوم پروتئین استفاده کرد.
در پروتئینهایی که دارای آمینواسیدهای فلوروفور[۴۸] هستند (مثل تریپتوفان، تیروزین یا فنیلآلانین) تغییر در [۴۹]IMax فلورسانس و شیفت قرمز[۵۰] در [۵۱]λMax فرایند دناتوره شدن پروتئین را نشان می دهند و هر دوی این تغییرات به دلیل افزایش قطبیت باقیماندههای تریپتوفان پروتئین با قرارگیری آن در معرض حلال است. مکانیسم ملکولی پایدار شدن آنزیم در مایعات یونی (در بیوکاتالیز کاربردی) همچنان نامعلوم است و نیاز به بررسیهای بیشتر وجود دارد (De Diego et al., 2004).
پروتئینها پس از برانگیختگی در طول موج nm 280 (مربوط به همگی فلوروفورهای پروتئین) یا nm 295 (بیشتر مربوط به باقیماندههای تریپتوفان)، به طور معمول نور را بین طول موج nm 300 و nm 350 منتشر می کنند. شدت فلورسانس در واقع جمع نور منتشر شده توسط هر کدام از باقیماندههای فلوروفور پروتئین میباشد. باز شدن نسبی ساختار پروتئین باعث افزایش برهمکنش باقیماندههای آمینواسیدی پروتئین با حلال (به طور معمول آب) می شود. همچنین ممکن است حلقه اندولی تریپتوفان با دیگر آمینواسیدهای موجود در ساختار پروتئین وارد برهمکنش شود. هر دوی این پدیده ها سبب کاهش شدت فلورسانس و گاهی سبب ایجاد یک شیفت قرمز در پیک نشر فلورسانس (کاهش λMax) می شود که این پدیده را نشانهای از باز شدن پروتئین در محیط آبی میدانند (Bekhouche et al., 2011).
با ورود مایعات یونی به محیط پروتئینها به عنوان حلالهای جدید، مشکلاتی در بررسی ساختار توسط روشهای مختلف ایجاد می شود. از جمله این مشکلات تداخلهای ایجاد شده در طیفهای CD و فلورسانس را میتوان نام برد که در گزارشات مختلفی به آنها اشاره شده است (Shu et al., 2011, Bekhouche et al., 2011, Attri and Venkatesu, 2013). با این وجود شاید بتوان ساختار پروتئین را بیشتر بر اساس شیفتهای λMax و مقایسه شدت فلورسانس در حالتهای دمادهی مختلف در یک مایع یونی با غلظت مشخص، مورد بررسی قرار داد.
به طور کلی میتوان گفت که طیف وسیعی از آنزیمها میتوانند مخلوطهای آبی مایعات یونی را به عنوان محیط واکنش تحمل کنند. به سختی میتوان مایع یونی را یافت که هیچ آنزیمی نتواند با آن سازگار باشد. عقیده بر این است که مایعات یونی در غلظتهای بالاتری، نسبت به حلالهای ملکولی قابل امتزاج با آب، میتوانند توسط آنزیمها تحمل شوند.
بسیاری از هیدرولازها به خصوص آنهایی که توانایی تحمل حلالهای ملکولی را دارند به میزان قابل توجهی میتوانند واکنشهای غیرهیدرولازی را در مایعات یونی کاتالیز کنند. میزان فعالیت آنزیمها در مایعات یونی در حد فعالیت آنها در حلالهای آلی و یا حتی بالاتر نیز میباشد. به علاوه در بسیاری از موارد افزایش پایداری دمایی و عملکردی و افزایش اختصاصیت انانتیو و ریجیو نیز دیده شده است.
مایعات یونی سازگار با آنزیمها به طور معمول برهمکنش قوی با آنزیم نمیدهند و باعث حل شدن آنزیم نمیشوند. تاکنون اساس نظری برای پیش بینی سازگار بودن یا نبودن مایع یونی با آنزیم ایجاد نشده است هرچند با توجه به علاقه زیادی که در این موضوع وجود دارد انتظار میرود که به زودی یک اساس نظری در این زمینه مطرح گردد.
مایعات یونی قابلیت بالایی در کاربرد به عنوان حلال در واکنشهای بیوترانسفورماسیون مربوط به واکنشدهندههای بسیار قطبی مانند پلیساکاریدها دارند؛ زیرا چنین واکنشهایی به دلیل محدودیتهای تعادل واکنش در آب قابل انجام نیستند. چنین جایگزینی یک محیط فرار با محیط غیرفرار مایعات یونی بدون شک ادامه خواهد یافت و به تدریج توسط صنایع شیمیایی پذیرفته خواهد شد و سهم بزرگی در ایجاد کارآیی بالای واکنشهای مختلف خواهد داشت. توسعه مایعات یونی ارزانتر نیز باعث افزایش استفاده از آنها در بیوترانسفورماسیونهای صنعتی خواهد شد. به علاوه باید این موضوع را در نظر داشت که سیستمهای حلالی که بر پایه مایعات یونی هستند قابلیت بالایی در انجام ترانسفورماسیونهای چند کاتالیزوری دارند. برای دستیابی به این اهداف تلاش های جدیدی انجام گرفته است.
بدون شک انتظار میرود که مایعات یونی سبز و زیست سازگار به زودی در دسترس باشند؛ زیرا به کارگیری مایعات یونی در ایجاد صنایع شیمیایی سبزتر، امری کاملا ضروری است. اینگونه به نظر میرسد که انجام بیوترانسفورماسیون در مایعات یونی بسیار امید بخش است.
فصل دوم
مروری بر پژوهشهای پیشین
۲-۱- پیشینه کاربرد مایعات یونی در بیوکاتالیز
اولین گزارش از بیوکاتالیز در محیط مایعات یونی مربوط به سال ۲۰۰۰ است (Cull et al., 2000). اولین کارهای انجام شده در این زمینه شامل مایعات یونی متشکل از کاتیونهای ۱و۳- دی آلکیل ایمیدازولیوم یا N- آلکیل پیریدینیوم و یک آنیون ضعیف کئوردینه کننده بود (شکل۲-۱و جدول ۲-۱). این نوع مایعات یونی هنوز نقش اصلی را در واکنشهای آنزیمی ایفا می کنند. هرچند که تحقیقات در حال حاضر بیشتر به سمت مایعات یونی با ساختارهای جدید گرایش یافته است. تاکنون مقالات مروری خوبی در زمینه بیوکاتالیز در مایعات یونی منتشر شده است که از آن جمله مقاله مروری ون رنتویجک و شلدون و مقالات مروری منیرالزمان را میتوان نام برد (Van Rantwijk and Sheldon, 2007, Moniruzzaman, 2010 a& b).
شکل۲-۱- ساختارهای نمونه از کاتیون مایعات یونی که به طور مرسوم در بیوکاتالیز استفاده میشوند
(Van Rantwijk and Sheldon, 2007).
جدول۲-۱- آنیونهای متداول در مایعات یونی
فرمول ساختاری |
علامت اختصاری |
نام آنیون |
BF4- |
BF4- |
Tetrafluoroborate |
PF6- |
PF6- |
Hexafluorophosphate |
(CF3SO2)2N- |
Tf2N |
Bis(trifluoromethylsulfonyl)amide |
CF3SO3- |
TfO |
Trifluoromethanesulfonate |
CF3COO- |
TFA |
Trifluoroacetate |
CH3SO3- |
MeSO3 |
Methylsulfite |
n-C7H15SO3- |