فیبر چند مدی با ضریب شکست پله ای :
ضریب شکست هسته: ۴۸/۱ =n۱
ضریب شکست غلاف: ۴۵۶/۱ =n۲
قطر هسته: ۵۰ الی ۴۰۰ میکرون
قطر غلاف: ۱۲۵ الی ۵۰۰ میکرون
قطر روکش: ۲۵۰ الی ۱۰۰۰ میکرون
تضعیف: ۱db/km الی ۵۰db/km
پهنای باند: ۶MHZ.km الی ۲۵MHZ.km
روزنه عددی: ۰.۱۶الی ۰.۵
فیبر تک مدی با ضریب شکست پله ای :
ضریب شکست هسته: ۴۶۰/۱ = n۱
ضریب شکست غلاف: ۴۵۶/۱ = n۲
قطر هسته: ۳ الی ۱۲ میکرون
قطر غلاف: ۵۰ الی ۱۲۵ میکرون
قطر روکش محافظ: ۲۵۰ الی ۱۰۰۰ میکرون
تضعیف: ۲db/km الی ۵db/km
پهنای باند: ۵۰۰MHZ.km و تا حدود ۲۰۰GHZ.km
روزنه عددی: ۰۸/۰ الی ۱۵/۰ (معمولاً حدود ۱/۰)
فیبر چند مدی با ضریب شکست مرحله ای :
ضریب شکست هسته: ۴۸/۱ = n۱
ضریب شکست غلاف: ۴۶/۱ = n۲
قطر هسته: ۳۰ الی ۱۰۰ میکرون(در مخابرات ۵۰ میکرون)
قطر غلاف: ۱۰۰ الی ۱۵۰ میکرون (در مخابرات ۱۲۵ میکرون کاربرد دارد)
قطر روکش محافظ: ۲۵۰ الی ۱۰۰۰ میکرون
تضعیف: ۷db/km الی ۱۰db/km
پهنای باند: ۱۵۰MHZ.km الی ۲GHZ.km
روزنه عددی: ۲/۰ الی ۳/۰
دی ان ای و ساختار آن
ساختار دیانای
دیانای یک ساختار دو رشته ایی متشکل از ۴ نوکلئوتید است. این نوکلئوتیدها عبارتند از (A) آدنین، (G) گوانین، © سیتوسین و تیمین (T). ساختار شیمیایی دیانای به صورت پیوند مشخصی از دو دنباله خطی از این ۴ نوکلئوتید میباشد. که این اتصالها فقط به صورت (A-T) , (T-A) , (C-G) , (G-C) وجود دارند.
کشف ساختار دیانای
در پایان سده نوزدهم یک بیوشیمیدان آلمانی بنام اسوالد اوری نشان داد که اسیدهای نوکلئیک دارای قند، اسید فسفریک و چند باز نیتروژندار میباشند. اندکی بعد مشخص شد که قند موجود در اسیدهای نوکلئیک میتواند ریبوز یا دئوکسی ریبوز باشد. پس، اسیدهای نوکلئیک به دو دسته DNA DeoxyriboNucleic Acid)) که قند موجود در آنها دئوکسی ریبوز است و RNA RiboNucleic Acid)) که قند موجود در آنها ریبوز است تقسیم میشوند.
در سال ۱۹۴۸ لینوس پاولینگ کشف کرد که بسیاری از مولکولهای پروتئینی به شکل یک مارپیچ هستند، و کم و بیش شکلی همانند فنر دارند. در سال ۱۹۵۰ نیز اروین شارگاف نشان داد که اگرچه آرایش بازهای موجود در ساختار DNA بسیار گوناگون است، ولی همواره نسبت باز آدنین و باز تیمین موجود در آن با هم برابر است و همین طور نسبت باز سیتوزین با باز گوانین. این دو یافته نقش مهمی را در آشکار شدن ساختار مولکول DNA داشتند. در دهه ۱۹۵۰ همچنان رقابت برای یافتن ساختار DNA ادامه داشت. در دانشگاه کمبریج فرانسیس کریک و جیمز واتسون برپایه کارهای پاولینگ کوشش داشتند تا با آرایه مدلهای فیزیکی ساختارهای احتمالی ممکن برای DNA را محدود کنند تا سرانجام به ساختار درست دست یابند. گروه دیگری در برگیرنده موریس ویلکینز و رزالین فرانکلین نیز در کالج کینگ لندن همزمان سرگرم مطالعه DNA بوند. روش کار این گروه با گروه پیشین متفاوت بود. آنها کوشش داشتند تا با روش آزمایشگاهی به ویژه با بکارگیری تصاویر پراش اشعه X از مولکول DNA، ساختار آن را معین کنند. رزالین الیس فرانکلین دانشمند زن انگلیسی در بیست وپنجمین روز ژوئیه ۱۹۲۰ در ناتینگ هیل لندن متولد شد.رزالین در ۱۵ سالگی و درحالی که اروپا از زنان و دختران جز خانه داری انتظار دیگری نداشت تصمیم می گیرد دانشمند شود اما با مخالفت پدر روبرو می شود با اینحال او در ۱۸ سالگی وارد دانشگاه کمبریج لندن می شود و سه سال بعد در رشته شیمی از کالج نینونهام در کمبریج فارغ التحصیل میشود. وی برای تحقق بخشیدن به اهدافش وارد مرکز تحقیقات زغال لندن شد وبررسی های خود را برای اخذ مدرک دکترادر زمینه ریز ساختمان گرافیت وکربن ادامه داد. رزالین فرانکلین جوان ۴سال بعد و در ۲۵ سالگی موفق به اخذ مدرک دکترا در زمینه بیوفیزیک ملکولی از دانشگاه کمبریج گردید.وی پس از جنگ جهانی دوم به مدت سه سال به فرانسه رفت ودر یک آزمایشگاه دولتی شیمی در پاریس مشغول به کار شد در آنجا با تکنیک پراش اشعه ایکس آشنا شد و در سال۱۹۵۰ مجدداً به انگلستان و به کمبریج برگشت تا مقامی درآزمایشگاه فیزیک شیمی کینگزکالج که بخشی از دانشگاه کمبریج لندن است به دست آورد. در دانشگاه همزمان با موریس ویلکینز اما در دو گروه جداگانه اقدام به بررسی روی مولکول DNA نمود. وی بعد از آزمایشات سخت و طولانی سرانجام مجموعهای از تصویر پراش پرتوی ایکس با کیفیت بالا، از بلور DNAتهیه کرد که البته هیچگاه به نام او به ثبت نرسید. ۳ سال بعد به آزمایشگاه کالج بریک بک رفت و در آنجاشروع به مطالعه روی ویروس موزائیک تنباکو کرد . او ثابت کرد که RNAویروس یک مارپیچ یگانه است وی همچنین روی پولیو ویروسها کار دیگری را آغاز کرد به عنوان مثال پس از آن او به مطالعه ی بسیار خطرناک روی ویروس های زنده ی فلج اطفال پرداخت در همان زمان بود که دو محقق انگلیسی یعنی واتسون و کریک معروف با بهره گرفتن از عکس هایی که رزالین تهیه کرده بود مدل ساختار دورشته ای مولکول DNAرا بدون اینکه اسمی از رزالین ببرند ارائه دادند. رزالین الیس فرانکلین جوان پس از سالها تلاش در راه علم زیست شناسی به علت قرار گرفتن به طور مستقیم در معرض اشعهx و کریستالو گرافی مبتلا به سرطان شد و سرانجام در سال۱۹۵۸ در۱۶ آوریل در چلسی بعد از دوسال دست و پنجه نرم کردن با سرطان و در۳۸ سالگی درگذشت. ۴سال بعد از مرگ فرانکلین واتسون و کریک و موریس ویلکینز جایزه نوبل فیزیولوژی و پزشکی را ازآن خود کردند.
در سال ۱۹۵۱، فرانکلین دریافت که DNA با نگرش به میزان نم هوای پیرامون، میتواند دو شکل متفاوت داشته باشد و بنابراین نتیجه گیری کرد که بخش فسفات مولکول در سمت بیرونی آن قرار دارد. اندکی بعد او با بکارگیری تصاویر اشعه X فهمید که DNA در حالت «نمناک» از همگی ویژگیهای یک مارپیچ برخوردار است؛ این احتمال که حالت دیگر مولکول DNA نیز به شکل مارپیچی باشد به ذهن او خطور کرد، ولی نمیخواست تا زمانی که شواهد پایانی برای این حدس پیدا کند آن را اعلام نماید. در ژانویه ۱۹۵۳ ویلکینز که از به نتیجه رسیدن تحقیقات ناامید شده بود، نتایج تحقیقات فرانکلین را بدون اطلاع و خشنودی او، با واتسون در میان گذاشت. واتسون و کریک با بکارگیری این نتایج مدلی بسیار شگفت انگیز را برای ساختار DNA پیشنهاد نمودند. آنها مولکول را به گونه دو زنجیر مارپیچی در برگیرنده نوکلئوتیدها تصور کردند که یکی از آنها بالا میرفت و دیگری پایین میآمد. کریک که به تازگی یافتههای شارگاف را هم مطالعه کرده بود کوشش کرد با بکارگیری آنها روش قرار گرفتن بازها را در مولکول DNA مشخص کند. او اظهار کرد که بازها در میانه این مارپیچ دوتایی دو به دو به هم متصل میشوند تا فاصله میان دو مارپیچ ثابت بماند. آنها ادعا کردند که هر یک از این دو مارپیچ مولکول DNA میتواند به نام قالبی برای ایجاد دیگری بهره گیری شود. در تقسیم سلولی این دو رشته از هم جدا میشوند و بر روی هر یک از آنها یک نمونه جدید همانند رشته مقابل پیشین ساخته میشود. با این روش بدون اینکه ساختار DNA عوض شود، یک DNA همانند آن فرآوری میشود. در اندک مواردی که در این روند خطایی پیش بیاید، گواه «جهش» خواهیم بود. مدل آنها چنان با اطلاعات برآمده از آزمایشها مطابقت داشت که بی درنگ مورد قبول همه واقع شد. کشف ساختار DNA را میتوان مهمترین یافته زیستی در صد سال گذشته دانست. در سال ۱۹۶۲ واتسون، کریک و ویلکینز موفق به دریافت پاداش نوبل شدند، ولی فرانکلین در گذشته بود.
فصل دوم
روش SPR(Surface Plasmon Resonance)
تشدید پلاسمونی سطح،جمع آوری نوسانات الکترونی در یک سطح جامد یا مایع بوسیله ی پرتو نور فرودی است.شرایط تشدید وقتی ایجاد می شود که فرکانس فوتون های نور با فرکانس طبیعی الکترون های نوسان کننده یکی باشد.الکترون هایی که علی رغم وجود نیروی بازگرداننده ی هسته های مثبت نوسان می کنند. SPRاندازه ای نانومتری دارد و به آن تشدید پلاسمونی نقطه ای سطح نیز گویند.
این روش پایه ی بسیاری از ابزارهای اندازه گیری میزان absorption مواد در سطوح فلزی مانند طلا و نقره و یا سطوح نانو ذرات فلزی است.همچنین این روش اساس کار بسیاری از بیو سنسورها با پایه ی رنگی است.
ساختار پلاسمونی سطح شامل امواج الکترومغناطیسی هستند که به صورت موازی با سطح مقطع فلز- دی الکتریک یا فلز خلا منتشر می شوند.از آنجایی که این امواج مرز بین فلز و محیط خارجی (آب یا هوا)هستند این نوسانات به تغییرات این مرز بسیار حساس است. شرایطی مانند جذب مولکولها در سطح فلز و …
برای توصیف وجود و مشخصات این ساختارها می توان از روش های گوناگونی مانند مدل نظریه ی کوانتومی،مدل دروده و… استفاده کرد.ساده ترین راه برای دست یابی به مسئله این است که رفتار هر ماده را به صورت همگن و پیوسته و با احتساب گذردهی نسبی مستقل از فرکانس بین سطح ماده و سطح خارجی بررسی کنیم.این پارامتر همان ثابت دی الکتریک سطح است زیرا این پارامتر نمایانگر توصیف وجود پلاسمون های الکترونی سطح است.
قسمت حقیقی ثابت دی الکتریک برای فلز باید منفی باشد و مقدار آن نیز از آنچه برای یک عایق در نظر گرفته می شود بزرگتر است.
مثلا این شرایط در سطح جدایی فلز و هوا و یا آب در محدوده ی امواج مادون قرمز قرار دارد.(که در آن بخش حقیقی ثابت دی الکتریک فلز منفی بوده و ثابت دی الکتریک آب و هوا مثبت است.)LSPR یا همان SPRنقطه ای نیز جمع شدن بار الکترونهای نوسان کننده روی نانوذرات فلزی است که بوسیله ی نور بر انگیخته شده اند.این میدان کاملا روی سطح نانو ذره متمرکز شده و به دلیل پراکندگی بلند برد ذرات به سرعت از سطح مقطع نانوذره –عایق به سمت زیر لایه ی عایق پراکنده می شود.شدت نور یکی از مهمترین پارامترها در این روش است.متمرکز بوده یعنی اینکه LSPR دقت و کیفیت بسیار بالایی دارد که فقط اندازه ی نانو ذره روی آن اثر می گذارد.
به دلیل امکان اندازه گیری دامنه ی میدان اثراتی که مربوط به تغییر دامنه هستند مانند اثرات اپتیکی- مغناطیسی به روش LSPR و SPRبررسی می شوند.
روش تشدید کرشمان(kretchmann configuration) برای بر انگیختن پلاسمون های سطحی به کار می رود که در آن از یک پرتو الکترونی یا نوری (طیف مریی یا مادون قرمز)استفاده می شود.تکانه ی پرتو ورودی طوری انتخاب می شود که از تکانه ی پلاسمون ها بیشتر باشد و این در حالتی است که از نور پلاریزه ی p استفاده شود.(پلاریزاسیون موازی با سطح صفحه ی فرودی).
ممکن است با عبور نور از داخل تیغه ی شیشه ای طول موج یا تکانه افزایش پیدا کند وپدیده ی تشدید در طول موج در زاویه ی خاصی اتفاق بیفتد.نور پلاریزه ی s (پلاریزاسیون عمودی بر سطح صفحه ی فرودی)نمی تواند پلاسمون های الکترونی سطح را بر انگیخته کند.پلاسمون های الکتریکی و مغناطیسی سطح با روابط زیر توصیف می شوند:
K(ω)=ω/c(ε۱μ۱ε۲μ۲/ ε۱μ۱ + ε۲μ۲)۱/۲
که در آن ε ثابت دی الکتریک و μ. ثابت گذر دهی مغناطیسی فلز،بلور شیشه ای و سطح لایه ی نازک فلزی هستند.
موادی که وجود پلاسمون های سطحی را تضمین می کنند عبارتند از نقره و طلا اما فلزاتی مانند مس ، تیتانیوم و کروم نیز مورد استفاده قرار می گیرند.
وقتی از نور برای بر انگیخته کردن امواج SP استفاده می شود معمولا دو حالت اتفاق می افتد.در ساختار OHO روشنایی نور سطح دیواره ی بلوک را روشن می کند و معمولا بازتابش داخلی اتفاق می افتد. یک لایه ی نازک فلزی از جنس طلا نیز تا حد امکان نزدیک دیواره ی بلوک قرار می گیرد به طوری که امواج بازتابشی با امواج پلاسمای سطح بر هم کنش کنند و به این ترتیب پلاسمون ها بر انگیخته شوند.در ساختار کریشمان فیلم فلزی روی سطح دیواره ی بلوک لایه نشانی شده است. نور دوباره سطح بلوک را روشن می کند و امواج بازتابشی در فیلم فلزی نفوذ می کنند.به این ترتیب پلاسمون ها در سطح دیگر لایه ی نازک فلزی بر انگیخته می شوند. این روشی است که در اکثر کاربرد ها مورد استفاده قرار می گیرد.
راهنمای ﻧﮕﺎرش ﻣﻘﺎﻟﻪ ﭘﮋوهشی درباره بررسی و ارزیابی نانوحسگر زیستی فیبر نوری جهت شناسایی مواد زیستی- ...